

Course Outline – Lean Six Sigma Black Belt

Feature:

The Lean Six Sigma Black Belt program is designed for someone who wishes to solve a business problem by data approach. The course helps participants analyze and drive business goals in a structured manner. Gives an overview of how to initiate six sigma in an organization a wide range of lean manufacturing/ management tools. The DMAIC phases have been explained in detail with a special focus on statistical competency improvement. All statistical calculations including the test of the hypothesis are done manually as well as using Minitab. The course covers topics as per lean six sigma black belt body of knowledge. Can be done by a participant with not much exposure to statistics. Also, support would be provided during training to complete the project by the coach.

Course Objective:

- 1) Enable participants to initiate six sigma journey in organization and drive business KPIs.
- 2) Select relevant improvement project
- 3) Use a wide range of lean tools effectively to get quick benefit in operation
- 4) Learn a bunch of analytical tool required in Define, Measure, Analyse, Improve, and Control phases
- 5) Make participant competent with statistical concept required for analysis
- 6) Reduce variation and achieve six sigma level by applying DMAIC methodology
- 7) Assist in project completion so that the participants can handle projects independently

Who Should Attend?

People from operation both manufacturing and service sectors, person in quality, business excellence, process engineering, consultants, operation managers, etc.

Course Duration:

12 Days (Including 2 days for project review and examination)

Course Outline – Lean Six Sigma Black Belt

Course Content:

Int	Introduction and Lean Tools					
	A. Introduction to six sigma		B. Introduction to lean Concepts			
1)	History of Six Sigma	1)	The lean concept			
2)	Six Sigma as business transformational	2)	The 5 Lean principles			
	strategy	3)	House of Lean			
3)	Six Sigma Organization	4)	5S and standardization			
4)	Balanced Score card	5)	The 8 major wastes			
5)	Structuring a six-sigma project	6)	Takt Time			
6)	Types of projects	7)	Overall Equipment effectiveness			
7)	Introduction to DMAIC	8)	Single Minute Exchange of Dies			
8)	12 step methodology for DMAIC	9)	Linkage of Lean Concepts and DMAIC			

Define and Measure Phase					
C. Define Phase		D. Measure			
1)	Voice of customer & Voice of Voice of	1)	Process Map		
	process	2)	Fundamental of statistics		
2)	Project charter	3)	DPMO, DPU and sigma level		
3)	CTQ Drill Down Tree	4)	Central limit theorem		
4)	Team formation – ARMI tool	5)	Process capability		
5)	SIPOC	6)	Process capability and performance		
6)	Value stream mapping	7)	Attribute Capability Study		
7)	Estimation of Benefit	8)	Measurement System analysis		
8)	Gantt Chart	9)	Linearity, Bias, Stability		
9)	CTQ present state	10)	Accuracy, Precision, Discrimination, GRR		
10)	Define toll gate checklist		for variable data		
		11)	Effectiveness, Miss Rate, False Alarm for		
			discrete data		
		12)	Cause & Effect Diagram		
		13)	Measure Toll Gate checklist		
L		1			

Course Outline – Lean Six Sigma Black Belt

	E. Analyse Phase		
1)	Correlation and Regression	12)	F Test,
2)	Non-Linear Regression	13)	Analysis of Variance (ANOVA)
3)	Multiple Regression	14)	Concept of Chi square distribution
4)	Logistic Regression	15)	Chi Square Test for association
5)	Forecasting Methods	16)	Chi square test for Goodness of Fit
6)	Test of Hypothesis	17)	Non parametric test- Mann Whitney Rank
7)	Concept of P-Value		Test
8)	Z test – I sample and 2 samples	18)	Wilcoxon Sign Rank Test
9)	T test – 1 sample	19)	Design of Experiment
10)	2 sample t test – Paired	20)	Full factorial Taguchi method
11)	2 sample t-test unpaired	21)	Sampling Methods
		22)	5 Why Analysis
		23)	Analyse Toll Gate Checklist

Improve, Control and Final Test					
F. Improve Phase		G. Control Phase			
1)	Brainstorming	1) Basic of FMEA			
2)	Action Planning	2) Control Plan			
3)	Cost benefit analysis	3) Kaizen and Poka Yoke			
4)	Piloting a solution	4) Visual management			
5)	Action Implementation	5) Statistical Process Control			
6)	Action effectiveness	6) Human Error and Mistake Proofing			
7)	Horizontal Deployment	7) Control Toll Gate Review			
8)	Improve Toll gate review	8) Financial Benefit Calculation			
		9) Q&A, Feedback and closure			

Certification:

Two criteria for certifications:

- 1) 100% attendance
- 2) 70% mark scoring in final exam of 120 min., and
- 3) At least one six sigma DMAIC Project completion demonstrating the tools application.